Spontaneous Tuberculosis in Fishes and in Other Cold-blooded Vertebrates with Special Reference to Mycobacterium fortuitum Cruz from Fish and Human Lesions

Ross F. Nigrelli & Henry Vogel*

New York Aquarium

(Plates I-VI)

INTRODUCTION

NTEREST in tuberculosis in cold-blooded animals was stimulated by a report by Bataillon, Dubard & Terre in 1897 on the disease in carp in a pond contaminated with dejecta from tubercular persons. It was later recognized that the acid-fast bacillus causing tuberculosis in the carp was a distinct species for which the name Mycobacterium piscium was given by Bataillon, Moeller & Terre (1902). The fact that this disease is found in fish led to speculations along the following lines: (1) that fish may be carriers of human tuberculosis organisms, (2) that fish, amphibians and reptiles could be used for the transmutation of human tuberculosis bacillus by serial passage, and (3) that these, or the acidfast bacilli from cold-blooded animals, could be used for the treatment and prevention of human tuberculosis. The controversies engendered by discussions on these topics were reviewed by Vogel (1956, 1958) and by Parisot (1958).

The relatively recent discoveries of atypical human pathogenic species, *Mycobacterium fortuitum* Cruz (see Gordon, 1957) and *Myco. balnei* Linell & Norden (1954), have revived interest in this subject.** These atypical forms, which are also found in fish and in water, together with the acid-fast bacilli causing tuberculosis in the lower vertebrates, show certain basic similarities in morphological, cultural and biochemical characteristics. Of particular interest is the report by Ross & Brancato (1959) that one of the strains of acid-fast bacilli isolated in our laboratory (Nigrelli, 1953) from the Neon Tetra (*Hyphessobrycon innesi*) is the same as *Mycobacterium fortuitum*, a pathogenic species first isolated from human and cattle lesions in South America.

This paper deals with further information on the Neon Tetra strains of mycobacteria, tuberculosis in other fishes in the New York Aquarium and with reports of the disease in fishes, amphibians and reptiles by other investigators.

TUBERCULOSIS IN FISHES IN THE New York Aquarium

Routine examinations of fish in the New York Aquarium and a search of the literature show that tuberculosis in poikilothermic animals is much more prevalent than is generally suspected. The host species are listed in Table IV. Table I lists those host species that were found infected in the New York Aquarium and from which the acid-fast bacilli were isolated and cultured.

PATHOLOGY OF TUBERCULOSIS IN FISHES

Tubercular lesions are found in gills, skin, muscle, heart, kidneys, spleen, liver, pancreas, mesenteries, gonads, eyes and brain. Lepromatous-like macular and necrotic skin and fin lesions are characteristic of tuberculosis in the Three-spot or Blue Gourami (Pl. V, fig. 9). The disease in the Neon Tetra is recognized externally by yellowish discoloration of the usually brilliant red markings on both sides of the hind part of the body (Pls. I & II, figs. 1, 2, 3). In most species there is no external evidence but the disease is recognized internally by the presence of extensive, yellowish adhesions or by numerous miliary-like tubercle bodies in various organs (Pls. II, III, V & VI, figs. 4, 5, 10, 11).

^{*}Bureau of Laboratories, New York City Department of Health.

^{**}See also Clark, H. Fred, & Charles C. Shepard, "Effect of Environmental Temperature on Infection with *Microbacterlum marinum (balnei)* of Mice and a Number of Poikilothermic Species. Jour. Bact., 86 (5): 1059-1069. Nov., 1963.

Species	Common Name	Habitat
ropical Freshwater spp.		
Hyphessobrycon innesi	Neon Tetra	Peruvian Amazon
Trichogaster trichopterus	Three-spot or Blue Gourami	Tropical Far East
Toxotes jaculator	Archerfish	Philippines & Far East
Tropical Marine spp.		
Plectorhynchus sp.	Sweet-lip	Pacific coral reefs
Premnas aculeatus	Spiny Clownfish	Pacific coral reefs
Amphiprion percula	Common Clownfish	Pacific coral reefs
Amphiprion akallaopsis	Skunk Clownfish	Pacific coral reefs
Amphiprion xanthurus	Chocolate Clownfish	Pacific coral reefs
Amphiprion laticlavius	White-saddle Clownfish	Pacific coral reefs

 TABLE I. HOSTS FROM WHICH ACID-FAST BACILLI HAVE BEEN ISOLATED

 (Cultures maintained at the New York Aquarium)

In the Climbing Perch and in the Goldfish the lesions appear as numerous pearl-like bodies in the liver, kidneys and mesenteries (Pls. V & VI, figs. 10, 11). Emaciation, exophthalmia, lordosis and other body abnormalities may or may not be associated with the disease.

Histopathologically, tuberculosis in fishes resembles the tubercular picture in warm-blooded animals but with the following differences: milder or no inflammatory reactions, greater fibrous development, absence of typical giant cells and little or no caseation (Pls. II & IV, figs. 3, 4, 7, 8). The term "hard tubercle" (Pls. V & VI, figs. 10, 11) appears appropriate for the lesions in the Climbing Perch, Goldfish and several other species. These tubercles are formed by coalescence of several smaller units (Pl. VI, fig. 11). In some freshwater fishes some degree of caseation may occur but typically the tissue reaction consists of loosely organized masses of semi-necrotic cells with groups of acid-fast bacilli in the core of epitheloid-like elements. (Pls. II & IV, figs. 3, 7, 8).

The term "mycobacteriosis" was suggested by Parisot & Wood (1960) as being more appropriate for tuberculosis in fish. The suggestion was based on the absence of typical inflammatory responses to the infection in salmonoid fishes. However, since this is not true for fishes generally and since typical tubercles and other classical tissues reactions are present, tuberculosis is a valid term for the disease in fish as well as in other cold-blooded animals.

TRANSMISSION

Tuberculosis in cold-blooded vertebrates can be induced by parenteral injections of mycobacterial suspensions. However, it is generally conceded that the natural mode of infection is by ingestion of the organisms directly from the water, by eating infected tissues or contaminated feed. Such origins of the infective organisms have been experimentally demonstrated for tuberculosis in tadpoles (Nonidez & Kahn, 1934, 1937)¹, in the Mexican platyfish (Baker & Hagen, 1942) and in snails (Michelson, 1961)². The increase in incidence of tuberculosis in hatchery-maintained salmon and trout is directly related to the increased usage of infected salmon carcass as feed for young salmon, a deterimental hatchery practice of which fishery biologists were unaware until recently (Wood & Ordal, 1958). The possibility of transovarian transmission or of the spread of the infection by contamination of sperms and eggs during stripping of mature stock fish or the spawning run fish was also considered. Although the results on the salmon studies were inconclusive (Ross & Johnson, 1962), our observations of tuberculosis in embryonic platyfish and guppies certainly suggest transovarian transmission as a definite possibility. In addition, the entry of infective organisms through lesions of the skin and gills caused by parasites or by mechanical injury should also be considered.

There is no information on the mechanism of spread of tuberculosis in fish. If the portal of entry is through lesions in the skin, the route must be through the lymphatic system or through the blood stream. Since the preponderance of evidence indicates that the infection is brought about by ingestion, the spread must then take place through the gastro-intestinal tract. Just how this is accomplished has not been determined, especially since we have not observed tubercular lesions in this organ (Pl. II, fig. 4).

¹Jose F. Nonidez & Morton C. Kahn. Tuberculosis induced in the tadpole by feeding. Proc. Soc. Exp. Biol. & Med., 31: 783. Experimental tuberculosis infection in the tadpole and the mechanism of spread. Amer. Rev. Tuberc., 36: 191.

²Edward H. Michelson. An acid-fast pathogen of fresh water snails. Amer. J. Trop. Med. & Hyg., 60: 423.

1963]

ISOLATION AND CULTURAL PROCEDURES

Isolation of the acid-fast bacilli from pathological materials in fishes is relatively simple. In the Neon Tetra, for example, the disease is readily recognized by the yellowish discoloration of the red markings. The fish is anaesthetized with urethane (methyl carbamate) or with MS-222 (tricaine methanesulphonate, Sandoz), and the lateral body wall in front of the vent is cauterized with a red-hot scalpel; the flesh adhering to the blade results in a raised flap, exposing the body cavity. A sterile bacteriological needle is plunged into the lesions, preferably into those in the kidneys, and the material is then transferred to slants of media ordinarily used to culture mycobacteria. In our laboratory, slants of Dorset's or Petroff's egg agar is used successfully. It is our experience that with this simple technique pure cultures of acid-fast bacilli are usually obtained. If difficulty is encountered, however, a portion of the disease tissue is digested with 4% sodium hydroxide for 15-30 minutes to destroy the contaminating organisms. The digest is neutralized with HCl and centrifuged. The sediment is then inoculated on one of the media suggested above. The digestion time with NaOH can be varied, depending on the sensitivity of the bacilli and the quantity of tissue to be digested. Diseased tissue can also be treated with trisodium phosphate, oxalic acid or with 6% sulfuric acid. Other techniques and media for handling tubercular fish tissue are suggested by Westgard (1959), and those found in any standard reference on methods in pathology and bacteriology may also be used. Since contamination of fish material may reach a high level in a short time, it is suggested that moribund fish be sacrificed and used for the isolation procedures.

Some Characteristics of Mycobacteria Isolated from Fishes in the New York Aquarium

The mycobacteria are easily demonstrated in smears of the skin and organ lesions by the Ziehl-Neelsen staining method (Pls. I & III, figs. 2, 5). The bacilli, which may or may not be seen within macrophages, are pleomorphic slender rods varying in length from 3 to 7 microns and show the bead-like constituents in the cell when stained, or when seen in electron microscope preparations (Pl. III, fig. 6). The organisms grow slowly as raised colonies on glycerol and egg agar slants when kept at room temperature. However, once growth is established, usually within one to three weeks, subcultures will grow more rapidly. Mycobacteria from tropical fishes grow well at 28°C. and subcultures become luxuriant even at 37°C. (Pl. VI, fig. 12) The degree of pigment production, which may develop either in light or in the dark, varies with the strain and age of the culture. The mycobacteria isolated from freshwater tropical fishes grown on Dorset's or Petroff's media vary in color from cream to yellowish-green; bacilli from stenohaline tropical fishes vary from light to bright yellow color.

CLASSIFICATION OF MYCOBACTERIA OF COLD-BLOODED VERTEBRATES

Table II list the species of mycobacteria from fishes, amphibians and reptiles that have been studied in detail; some of these are recognized as valid species and are included in Bergey's Manual of Determinative Bacteriology.

The growth and nutritional requirements, antigenic structure, pathogenicity, source and habitat of Mycobacterium piscium, Myco. marinum, Myco. ranae, Myco. thamnopheos and Myco. friedmanni are summarized by Reed (1948). Gordon (1957) recognizes and characterizes only Myco. marinum. Myco. platypoecilus, Myco. thamnopheos and Myco. fortuitum. The type of culture of *Mycobacterium piscium* is apparently lost while Myco. ranae and Myco. friedmanni, together with certain fish strains (e.g., from Halibut and Halibut roe), are considered to be identical with Myco, smegmatis and/or with Myco. fortuitum (Gordon & Smith, 1955). The information on Mycobacterium anabanti Besse (1949a) and Myco. salmoniphi*lum* Ross (1960) was not available at the time to Gordon and her co-workers for evaluation. However, Gordon & Mihm (1959) reported that certain of the strains from trout and salmon are identical with Myco. fortuitum.

Except for the Neon Tetra strains, the mycobacteria of the fish listed in Table I have not been further characterized. Ross & Brancato (1959) considered the Neon Tetra strain 9-21H, which is a subculture of our H-strain, to be identical with *Mycobacterium fortuitum*. Some differences in the utilization of several substances as carbon source are noted between strain 9-21H and strains H and N as analyzed by Vogel (1959). These are shown in Table III and compared with *Mycobacterium marinum*, *Myco. fortuitum* from mammals and with the several strains of *Myco. salmoniphilum* which were recognized as *Myco. fortuitum* by Gordon and Mihm (1959).

DISCUSSION

As pointed out by Fregnan, Smith & Randall (1961), a great deal of attention has been

TABLE II	. Species of	MYCOBACTERIA OF	POIKILOTHERMS
----------	--------------	-----------------	---------------

Mycobacteria	Host
	I. Fishes
Mycobacterium piscium (see Reed, 1948)	Cyprinus carpio, European Carp
Mycobacterium marinum Aronson, 1926	Abudefduf mauritii, Sergeant Major
	Micropogon undulatus, Croaker
	Centropristis striatus, Sea Bass (Philadelphia Aquarium)
Mycobacterium platypoecilus Baker & Hagen, 1942	Playtpoecilus maculatus, Mexican Platyfish (Cornell Univ.)
Mycobacterium anabanti Besse, 1949a	Macropodus opercularis, Paradisefish (France)
Mycobacterium fortuitum Cruz (see Gordon, 1957) Neon Tetra Strain 9-21 H (Ross & Brancato, 1959)	Hyphessobrycon innesi, Neon Tetra (New York Aquarium)
Mycobacterium salmoniphilum Ross, 1960	Oncorhynchus tschawytscha, Chinook Salmon Salmon gairdneri, Steelhead Trout (Hatcheries, Oregon & Washington)
	II. Amphibians
Mycobacterium ranae (Küster, 1905) (see Reed, 1948)	European Frogs
	III. Reptiles
Mycobacterium friedmanni Holland, 1920 (see Reed, 1948)	Chelone corticata, Loggerhead Turtle (European Zoo)
Mycobacterium thamnopheos Aronson, 1929	Thamnophis sirtalis, Garter Snake (U.S.A.)

directed towards the difficult problem of differentiation and classification of saprophytic and pathogenic mycobacteria ever since the discovery of the tubercle bacillus by Robert Koch in 1882. No entirely satisfactory method has yet been developed and all attempts so far have led to considerable confusion. This is especially true for the attempts to classify the mycobacteria causing tuberculosis in fishes, amphibians and reptiles. For example, Gordon & Smith (1955) and Gordon & Mihm (1959) reported that several strains of mycobacteria from coldblooded vertebrates were identical either with Mycobacterium smegmatis or Myco. fortuitum. Gordon (1957) considers Myco. marinum, Myco. platypoecilus and Myco. thamnopheos to be valid species. However, the discovery of Mycobacterium balnei in swimming pools and in human lesions (Linell & Norden, 1954; Swift & Cohen, 1962) has added to the confusion. Bojalil (1959) considers this species to be the same as Myco. marinum while McMillen & Kushner (1959) report that Myco. marinum, Myco. platypoecilus and Myco. balnei represent a single species which, by priority, should be Myco. marinum Aronson. In addition, McMillen (1960) indicates that Myco. fortuitum is a mutation or adaptation of Myco. marinum.

If the above reports are valid, then all strains of mycobacteria from marine and freshwater fishes, regardless of ecological and other biological factors, belong to either *Mycobacterium* *marinum* originally described from Atlantic Coast fishes or to *Mycobacterium fortuitum* first reported from cattle and human abscesses. It is difficult to believe that either species is a ubiquitous pathogen of fish with no host specificity.

In any event, it is quite apparent that tuberculosis in cold-blooded animals, and especially in fishes, is much more widespread than is generally suspected. Although tuberculosis has been found mainly in fishes kept in aquaria, hatcheries and in fish holding ponds, cases of tuberculosis in feral populations have been reported (Nigrelli, 1953). Of particular interest is the epizootics in salmonoids in the Pacific Northwest, both in hatchery-reared fishes and in migrating populations (Wood & Ordal, 1958; Wood, 1959; Ross, 1959; Parisot & Wood, 1960). Tuberculosis in these species (Table IV), the presence of which was first reported by Earp, Ellis & Ordal (1955), is therefore of great economic importance. The disease is also prevalent in a large variety of tropical fresh water fishes. The members of the families Characidae and Cyprinidae, which are highly valued by fish hobbyists, are especially susceptible and commercially available to the microbiologist interested in this problem.

SUMMARY

A survey of fishes in the New York Aquarium and a search of the literature show that tuberculosis in these animals and in other poikilotherms is more prevalent than is generally suspected.

Carbon Source	I	Neon letra Strains ¹	III sui	Myco. fortuitum ²	utum ²	Myco. marinum ³ VI VI	arinum ³ VII	IIIA	Myco. salmoniphilum ⁴ IX X	oniphilum ⁴ X	IX
Glucose	1	1	×	ж	х	1	1				
Mannose	X	х	x	Х	х	х	1	×	x	х	×
Trehalose	X	х	ĸ	Х	Х	х	1	×	x	x	×
Fructose	×	×	х	1	х	x	×	X	0	0	0
Mannitol	0	х	0	(occasional)	0	0	1	Х	0	0	0
Xylose	(slight)	0	0	(occasional)	0	0	1	0	0	0	0
Sorbitol	×	х	0	(rarely)	0	(slight)	0	0	0	0	0
Sucrose	х	0	0	1	0	0	1	0	0	0	0
Rhamnose	0	0	0	0	0	0	I	0	0	0	0
Dextrose	×	х	1	1	ł	х	1	X	х	X	х
Dulcitol	0	0	0	0	0	0	1	0	0	0	0
Arabinose	0	(slight)	0	(occasional)	0	0	х	0	0	0	0
Lactose	0	(slight)	0	0	0	0	ł	0	0	0	0
Galactose	1	1	0	(occasional)	0	ł	0	0	0	0	0
Raffinose	(slight)	(slight)	0	(rarely)	0	0	1	0	0	0	0
Inositol	0	0	0	(occasional)	0	0	I	0	0	0	0
Maltose	(slight)	Х	0	(rarely)	0	(slight)	1	0	0	0	0
Inulin	0	0	1	1	I	0	1	1	1	1	1
Erythritol	0	0	1	(occasional)	ł	0	I	1	1	I	I
Amygdalin	(slight)	(slight)	Ass	ł	1	(slight)	I	1	1	I	1
Salicin	X	0	1	1	I	0	1	1	1	ł	1
Starch	I	ł	I	(hydrolyzed)	1	-	I	1	1	1	1
I, H-strain, II, I	N-strain, Vogel ((1959); III, 9-2	21H strain,	1, H-strain, II, N-strain, Vogel (1959); III, 9-21H strain, Ross & Brancato (1959)	9).						
*1 V, GOLUOH (1937); V, NOSS & DIAUCARO (1937 811 V. A. (1950); VVI Cordon (1957) (Cord	N: VII Gordon	CIDENT (1935	or & Miha	"I'V, GOLGOH (1997); V, NOSS & DIAUCAGO (1999). RVI VI. M. 1960V, VII Gordon (1957) (Gordon B. Mihm (1950) 80 strains arominad	bonimo						
- A 1, Y USCI (122)	TODIOO 'TY A ()						Triches V	CAD at un	and the second second		

1963]

TABLE III. CARBON SOURCES UTILIZED BY MYCOBACTERIA FROM FISH

TABLE IV. FISHES, AMPHIBIANS AND REPTILES IN WHICH TUBERCULOSIS HAS BEEN REPORTED

	Species	Common Name	Reference
Te	leostomi		
1.	Salmonidae		
	(1) Oncorhynchus gorbuscha	Humpback Salmon	47, 64
	(2) Oncorhynchus keta	Dog Salmon	47
	(3) Oncorhynchus kisutch	Silver Salmon	47,64
	(4) Oncorhynchus nerka	Blueback Salmon	47,64
	(5) Oncorhynchus tschawytscha	Chinook or King Salmon	15, 41, 47
	(6) Salmo gairdneri	Steelhead, Rainbow Trout	47, 64
2.	Ösmeridae	,	·
	(7) Osmerus mordax	American Smelt	62
3.	Umbridae		
	(8) Umbra pygmaea	Mud-Minnow	51
4.	Characidae		
	(9) Aphyochorax rubripinnis		
	(Aphiocharax rubrepinis)	Bloodfin	NYA, 11, 27
	(10) Gymnocorymbus ternetzi	Black Tetra	NYA, 11, 27, 32
	(11) Hemigrammus rhodostomus		NYA, 32
	(12) Hemigrammus unilineatus	Feather Fin	11
	(13) Hemigrammus erythrozona		
	(Hyphessobrycon gracilis)	Glowlight Tetra	11
	(14) Hemigrammus ocellifer	Head-and-Tail Light	2
	(15) Hyphessobrycon bifasciatus	Yellow Tetra	27
	(16) Hyphessobrycon flammeus	Flame Characin	NYA, 11
	(17) Hyphessobrycon cardinalis	Cardinal Tetra	NYA, 11
	(18) Hyphessobrycon innesi	Neon Tetra	NYA, 11, 38, 39,
			(also Conroy 1963)*
	(19) Hyphessobrycon pulcher		32
	(20) Hyphessobrycon rosaeus		
	(= ornatus)	Rosy Barb	32
	(21) Hyphessobrycon callistus		
	(= serpae)	Serpa Tetra	NYA, 2, 27, 32
	(22) Moenkhausia pittieri	Pittier's Moenkhausia	NYA, 32
	(23) Pyrrhulina rachoviana	Rachow's Pyrrhulian	27
	(24) Pristella riddlei	Riddle's Pristella	2
5.	Cyprinidae		
	(25) Notemigonus crysoleucas	Dace or Roach	62
	(26) Barbus fluviatilis	European Barb	51
	(27) Brachydanio albolineatus		
	(Danio albolineatus)	Pearl Danio	NYA, 11, 27, 38
	(28) Brachydanio analipunctatus	Tail-Spot Danio	NYA, 38
	(29) Brachydanio nigrofasciatus	Spotted Danio	NYA
	(30) Brachydanio rerio	1	
	(Danio rerio)	Zebra Danio	NYA, 11, 32, 38
	(31) Danio malabaricus	Giant Danio	NYA, 11, 27, 32
	(32) Carassius auratus	Ciult Dulle	,, 21, 22
	(52) Carassius auratus (C. oratus)	Goldfish	11, 27, 32
	(33) Carassius carassius	Cruscian Carp	32
	(34) Cyprinus carpio	Common Carp	7, 8, 32
	Cyprinus carpio	Hi-Goi or Golden Carp	23
	(35) Puntius conchonius	Door Dool	NIXZA 11
	(Barbus conchonius)	Rosy Barb	NYA, 11
	(36) Puntius lineatus		
	(Barbus lineatus)	Lined Barb	32
	(37) Puntius nigrofasciatus		
	(Barbus nigrofasciatus)	Black Ruby Barb	32
	(38) Puntius phutunio		
	(Barbus phutunio)	Dwarf or Pygmy Barb	32
	(39) Puntius semifasciolatus	Chinese Barb	NYA
	(5) 1 unitus sentijuscioiaius	Chillese Daib	14117

*David W. Conroy, Univ. Nac. de Buenos Aires, Lab. de Bact., Inst. de Biol. Marino; Microbid. Españ., 16: 47-54.

TABLE IV. FISHES, AMPHIBIANS AND REPTILES IN WHICH TUBERCULOSIS HAS BEEN REPORTED (Continued)

Species	Common Name	Reference
(40) Puntius tetrazona		
(Barbus sumatranus)	Sumatra Barb	NYA, 32
(41) Puntius partipentazona	Five-Banded Barb	32
(42) Puntius ticto		
(Barbus ticto)	Ticto Barb	32
(43) Rasbora einthoveni	Brilliant Rasbora	32
(44) Rasbora heteromorpha	Red Rasbora	NYA, 11
(45) Rasbora lateristriata	Striped Rasbora	NYA
(46) Rasbora leptosoma	Slender-Bodied Rasbora	32
(47) Rasbora trilineata	Scissors-Tail	NYA
(48) Tanichthys albonubes	White-Cloud Mountain Fish	NYA, 38
(49) Idus melanotus	Golden Orf	32
(50) Tinca tinca	Tench	10
6. Siluridae		
(51) Silurus glanis	Wels or European Catfish	23
7. Bagridae	-	
(52) Rhamdia sapo		32
8. Clariidae		
(53) Clarias dumerili		27, 32
9. Loricariidae		
(54)Plectostomus punctatus		32
0. Gadidae		
(55) Gadus collarias	Atlantic Codfish	1,28
11. Cyprinodontidae		
(56) Aphyosemion australe	Lyretail	11
(57) Oryziae latipes	j	
(Aplocheilus latipes)	Medaka	10, 11
(58) Aplocheilus panchax		
(Panchax panchax)	Panchax	10
(59) Rivulus cylindraceus	Cuban Rivulus	11
(60) Cynolebias wolterstorffi	(So. American Annals)	Roy L. Walford Aug. 1963†
		(Personal Communication
(61) Cynolebias adeoffi		Roy L. Walford Aug. 1963†
		(Personal Communication
(62) Cynolebias elongatus		Roy L. Walford Aug. 1963†
		(Personal Communication
12. Poeciliidae		
(63) Lebistes reticulatus	Guppy	NYA, 11
(64) Xiphophorus helleri	Swordtail	NYA, 11, 27, 32
(65) Platypoecilus maculatus	Platyfish	NYA, 6, 11, 38
(65a) Molliensia sphenops	Mollie	43
13. Belonidae		
(66) Belone belone	European Garfish	44
14. Holocentridae		
(67) Holocentrus ascensionis	Squirrelfish	62
15. Atherinidae		
(68) Melanotaenis nigrans	Australian Rainbow Fish	11
16. Serranidae		
(69) Centropristis furvus		62
(70) Centropristis striatus	Black Sea Bass	3
(71) Epinephelus adscenionis		
(Epinephelus ascenionis)	Rock Hind	62
(72) Epinephelus guttatus	Red Hind	62
(73) Epinephelus morio	Red Grouper	62
(74) Epinephelus sp.	Gray Grouper	62
(75) Epinephelus sp.	Queen Grouper	62
(76) Epinephelus striatus	Nassau Grouper	62
(77) Morone americana	White Perch	62
(78) Morone labrax	European bass	44

†Dept. Path. Univ. Calif. Med. Center, Los Angeles.

TABLE IV. FISHES, AMPHIBIANS AND REPTILES IN WHICH TUBERCULOSIS HAS BEEN REPORTED (Continued)

	Species	Common Name	Reference
	(79) Mycteroperca bonaci		
	(Epinephelus var.)	Black Grouper	62
	(80) Mycteroperca falcata		
	(Mictoperca phenax)	Scamp	62
	(81) Roccus saxatilis		
17	(Roccus lineatus)	Striped bass	NYA, 3, 62
17.	Centrarchidae		
	(82) Lepomis gibbosus	D. 11	
	(Eupomotis gibbosus)	Pumpkinseed	11
10	(83) Micropterus dolomieu Percidae	Smallmouth Bass	62
10.	(84) Lucioperca lucioperca		
	(Lucioperca sandra)	European Pike-Perch	23
	(85) Perca flavescens	Yellow Perch	62
19	Carangidae	i chow i cron	
	(86) Trachinotus carolinus	Common Pompano	62
	(87) Vomer setapinnis	Moonfish	62
20.	Lutianidae		
	(88) Ocyurus chrysurus	Yellow-tailed snapper	62
	(89) Lutianus apodus	Schoolmaster	62
	(90) Lutianus griseus	Gray snapper	3,62
	(91) Lutianus jocu	Dog snapper	62
	(92) Lutianus synagris	Lane (Spot) snapper	62
21.	Sciaenidae		
	(93) Cynoscion regalis	Weakfish or Gray Squeteague	62
	(94) Leiostomus xanthurus	Spot	62
	(95) Micropogon undulatus	Atlantic Croaker	3,62
22	(96) Pogonias cromis	Black Sea Drum	62
22.	Pomadasyidae	Red Mouth Crust	62
	(97) Bathystoma sp.	Red-Mouth Grunt	NYA
	(98) Plectorhynchus sp. (99) Anisotremus surinamensis	Sweet Lip Black Margate	62
	(100) Anisotremus virginicus	Porkfish	62
23.	Toxotidae	A OF KIISH	0.8
201	(101) Toxotes jaculator	Archerfish	NYA
24.	Kyphosidae		
	(102) Kyphosus secatrix	Bermuda Chub	62
25.	Sparidae		
	(103) Archosargus probatocephalus	Sheephead	62
	(104) Sargus sargus		
	(Sargus rondeleti)	Sargo	32
	(Diplodus sargus)		
	(105) Cantharus lineatus	Oldwife or Black Sea Bream	32
26.	Maenidae		
	(106) Spicara argus	Discut Markin Diskana	44
0.7	(Smaris alcedo)	Picarel Martin Pècheur	44
27.	Scatophagidae	0	32
	(107) Scatophagus argus	Scat	32
20	(108) Monodactylus argentus	Silver Angelfish	52
28.	Cichlidae (109) Apistogramma ramirezi	Ramirez's dwarf cichlid	43, 45
	(109) Apistogramma ramirezi (110) Cichlasoma facetum	Chanchita	32
	(111) Cichlasoma biocellatum	Jack Dempsey	32
	(112) Cichlasoma festivum	ruck Dempsey	
	(Cichlasoma insignis)	Festive Cichlid	32
	(113) Cichlasoma meeki	Firemouth	43, 45
	(114) Aequidens portalegrensis	Port	NYA, 2
	(115) Aequidens curviceps	Flag Cichlid	2
	(116) Haplochromis multicolor	Egyptian Mouth-Breeder	2, 27
	(117) Hemichromis bimaculatus	Jewelfish	11
	(118) Nannacara anomala	Golden-Eyed Dwarf Cichlid	2, 27

TABLE IV. FISHES, AMPHIBIANS AND REPT	ILES IN WHICH TUBERCULOSIS	HAS BEEN REPORTED (Continued)
N		

	(119) Pterophyllum scalare, or		
	Pterophyllum eimekei	Angelfish or Scalare	NYA, 11, 32
	(120) Symphysodon discus	Disc Cichlid	NYA, 43, 45
29.	Pomacentridae		
	(121) Abudefduf saxatilis		
	(Abudefduf marginalis)	Sergeant Major	3,62
	(Abudefduf mauritii)		
	(122) Amphiprion percula	Clownfish	NYA
	(123) Amphiprion laticlavius	White-Saddled Clownfish	NYA
	(124) Amphiprion xanthurus	Chocolate Clownfish	NYA
	(125) Amphiprion akallaopsis(126) Dascyllus auranus	Skunkfish White Tailed Buller	NYA NYA 22
	(120) Dascynus auranus (127) Pomacentrus leucostictus	White-Tailed Puller	NYA, 32
	(Eupomacentrus leucostictus)	Beau Gregory	62
	(128) Premnas biaculeatus	Spiny Clownfish	NYA
30	Chaetodontidae	Spiny Clowinish	IVIA
50.	(129) Pomacanthus arcuatus	Black Angelfish	62
	(130) Angelichthys isabelita	Blue Angelfish (common	
		Angelfish)	62
31.	Labridae		
	(131) Lachnolaimus maximus	Hogfish	62
	(132) Tautog onitis	Tautog	62
32.	Acanthuridae	5	
	(133) Acanthurus coeruleus		
	(Teuthis coeruleus)	Blue Tang	62
33.	Anabantidae	5	
	(134) Anabas testudineus	Climbing Perch	NYA, 27, 32
	(135) Betta splendens	Siamese Fighting Fish	NYA, 11
	(136) Colisa lalia	Dwarf Gourami	NYA, 11, 27
	(137) Macropodus opercularis	Paradisefish	NYA, 11
	(138) Trichogaster trichopterus		
	(Trichopodus trichopterus)	Three-Spot (Blue) Gourami	NYA, 11, Conroy, 1963
	(139) Trichogaster leeri	Pearl Gourami	NYA, 32, Conroy, 1963
	(140) Trichopsis vittatus		
	(Ctenops vittatus)	Croaking Gourami	11
34.	Triglidae		
	(141) Prionotus carolinus	Common Sea Robin	62
35.	Pleuronectidae		
	(142) Hippoglossus hippoglossus	4 41 4 - 1 1*1 - A	
~ ~	(Hippoglossus vulgaris)	Atlantic halibut	29, 56
36.	Bothidae	****	
	(143) Lophopsetta maculata	Windowpane	62
	(144) Paralichthys dentatus	Fluke or Summer Flounder	62
37.	Monacanthidae		
	(145) Alutera monacanthus	Filefish	62
38.	Balistidae		
	(146) Balistes vetula	Queen triggerfish	62
	(147) Balistes carolinensis	Common triggerfish	62
39.	Diodontidae		
	(148) Chilomycterus schoepfi	Spiny Boxfish or Burrfish	62
	(149) Diodon hystrix	Porcupine fish	62
4.0	(150) Sphaeroides maculatus	Northern puffer	62
40.	Batrachoididae		
	(151) Opsanus tau	Northern Toadfish	62
. A1	nphibia		
	A T		
	Ambystomidae		
	Ambystomidae (1) Siredon mexicanus (= Ambystoma mexicanus)	Axolotl	23, 43

TABLE IV. FISHES, AMPHIBIANS AND REPTILES IN WHICH TUBERCULOSIS HAS BEEN REPORTED (Continued)

	Species	Common Name	Reference
2.	Pseudidae		
	(2) Pseudis paradoxa	Paradox Frog	22, 23
3.	Ranidae		
		American Bullfrog	5
	1	European Frogs	31, 30, 33, 50
	(5) Rana tigrina		26
4.	Leptodactylidae	Dahlar Pres	12
	(6) Leptodactylus pentadactylus(7) Pleurodema cinere	Robber Frog	13 35
	(8) Pleurodema marmoratus		35
		South American Horned Frog	
5.	Bufonidae	0	
	(10) Bufo spinulosus		35
6.	Pipidae		
	(11) Xenopus laevis	South African Clawed Frog	52
III. Re	ptilia		
	Chelonidae		
	(1) Chelone corticata		
		Loggerhead Turtle	17
2.	Trionychidae		
		Indian Softshell Turtle	53
	(3) Trionyx triungis	Nile Softshell Turtle	11, 23
3.	Alligatoridae		
	(4) Caiman sclerops	Spectacled Caiman	22, 23, 24, 53
Д,	Iguanidae		
		Spiny-tailed	
		Iguana	53
5.	Lacertidae		
	(6) Lacerta viridis	Green Lizard	9
6.	Boidae		10
	(7) Boa constrictor	Boa Constrictor	18
	(8) Python molurus(9) Python reticulatus	Indian Rock Python Reticulated Python	50 25
	(10) Python sebae	African Rock Python	24, 53
	(11) Python sp.		18, 23, 26, 54
	(12) Python spilotes		26
7.	Colubridae		
	(13) Coluber longissimus		
	$(= Elaphe \ longissimus)$	Aesculapian Snake	23, 53
	(14) Lampropeltis getulus holbrooki	iSpeckled King Snake	23, 24
	(15) Tropidonotus natrix var.	Evenen Creek Sacks	55
	murorum (= Natrix natrix) (16) Natrix piscator	European Grass Snake Checkered Keelback	23, 24
	(17) Coluber catenifer	Checkeleu Ixtelback	
	(= Pituophis catenifer)	Gopher Snake	4
	(18) Tarbophis fallax	Cat Snake	22
	(19) Thamnophis sirtalis	Eastern Garter Snake	4
	(20) Agkistrodon piscivorus		26
8.	Elapidae		
	(21) Naja naja	Cobra	NYA, 58, 59
9.	Crotalidae		
	(22) Crotalus exsul		22.52
	(= Crotalus ruber)	Red Rattlesnake	23, 53
10.	Viparidae	D (7 4 11	22.52
	(23) Bitis arietans	Puff Adder	23, 53
11.	Anguidae (24) Anguis fragilis	European Slowworm	8

The disease has been found in 151 species of fishes, 11 species of amphibians and 24 species of reptiles.

In the New York Aquarium, tuberculosis was present in 40 species of fishes, especially in tropical freshwater forms belonging to the families Characidae, Cyprinidae and Poecilidae. Of special interest is the report that the acid-fast bacillus isolated from the Neon Tetra (*Hyphessobrycon innesi*) is identical with *Mycobacterium fortuitum*, a human pathogen. The disease is also found in a group of stenohaline, Pacific coral reef species commonly called clownfishes, members of the family Pomacentridae.

The pathology of tuberculosis in the fishes studied in the Aquarium is described and the taxonomy of mycobacteria from cold-blooded vertebrates is briefly discussed.

Stock cultures of mycobacteria isolated from the Neon Tetra, Blue Gourami, Archerfish, Sweet-lip (*Plectorhynchus* sp.) and from the clownfishes are maintained in the laboratory of the New York Aquarium.

REFERENCES

- 1. ALEXANDER, D. M.
 - 1913. A review of piscine tuberculosis, with a description of acid-fast bacillus in the cod. Lancashire Sea Fisheries Lab., Rep. for 1912, no. 21: 43-50.
- 2. AMLACHER, ERWIN
 - 1961. Taschenbuch der Fischkrankheiten. Gustav Fischer Verlag, Jena. 286 pp.
- 3. Aronson, J. D.
 - 1926. Spontaneous tuberculosis in salt water fish. J. Infect. Dis., 39: 315-320.
- 1929. Spontaneous tuberculosis in snakes. N. sp. Mycobacterium thamnopheos. J. Infect. Dis., 44: 215-223.
- 1938. Tuberculosis of cold-blooded animals. In: Tuberculosis and Leprosy, AAAS, Symposium Series, vol. 1: 80-86.
- BAKER, J. A. & W. A. HAGAN
 1942. Tuberculosis of the Mexican platyfish (*Platypoecilus maculatus*). J. Infect. Dis., 70: 248-252.
- BATAILLON, E., DUBARD & L. TERRE
 1897. Un noveau type de tuberculose. Compt. Rend. Soc. Biol., 49: 446-449.
- BATAILLON, E., A. MOELLER N L. TERRE 1902. Über die Identität des Bacillus des Karpfens (Bataillon, Dubard und Terre) und des Bacillus der Blindsschleuche (Moeller). Z. Tuberk., 3: 467-468.

- 9. BERTARELLI, E. & J. BOCCHIA
 - 1910. Neue Untersuchungen über die Tuberkulose der Kaltblütter. Zentrbl. Bakt., Abt. I, Orig., 54: 385-393.
- 10. Besse, P.
 - 1949a. Epizootie à bacilles acid-resistants chez poissons exotique. Bull. Acad. Vet. de France, 22: 151-154.
- 1949b. Quelques affections à bacilles acid-resistants chez les poecilothermes vivant en aquarium. Bull. Acad. Vet. de France, 22: 425-431.
- 12. BOJALIL, L. F.
 - 1959. Estudio comparativo entre Mycobacterium marinum y Mycobacterium balnei. Rev. Lat. Amer. Microbiol., 2: 169-174.
- 13. DARZIN, E.
 - 1952. The epizootic of tuberculosis among the Ghias in Bahia. Acta Tuberc. Scand., 26: 170-174.
- 14. EARP, BRIAN J.
 - 1959. Mycobacteria in adult salmonoid fishes returning to State hatcheries in Washington. U.S. Fish & Wildlife Serv., Sp. Sci. Rep. Fish. no. 332: 10-12.
- 15. EARP, B. J., C. H. ELLIS & E. J. ORDAL
 - 1953. Kidney disease in young salmon. State of Washington, Dept. Fish., Sp. Rept., Ser. no. 1, March 1953, 74 pp.
- FREGNAN, G. B., D. W. SMITH & H. M. RANDALL 1961. Biological and chemical studies on mycobacteria. Relationship of colony morphology to mycoside content for Mycobacterium kansaii and Mycobacterium fortuitum. J. Bact., 82: 517-527.
- 17. FRIEDMANN, F. F.
 - 1903. Spontane Lungentuberkulose mit grosser Kaverne bei einer Wasserschildkröte (*Chelone corticata*). Deutsch. med. Wochenschr., 29: 25-26.
- 18. GIBBES, H. & E. L. SHURLY
 - 1890. An investigation into the etiology of phthisis. Amer. J. Med. Sci., 100: 145-158.
- 19. GORDON, RUTH
 - 1957. Genus 1. Mycobacterium Lehmann and Newmann, 1896. In: Bergey's Manual of Determinative Bacteriology, 7th Ed., pp. 695-705. Williams & Wilkins Co., Baltimore.
- 20. Gordon, Ruth E. & Joan M. Mihm
 - 1959. A comparison of four species of mycobacteria. J. Gen. Microbiol., 21: 736-748.

1963]

- 21. GORDON, RUTH E. & MILDRED M. SMITH
 - 1955. Rapidly growing acid-fast bacteria. II. Species description of *Mycobacterium* fortuitum Cruz. J. Bact., 69: 502-507.
- 22. Griffith, A. S.
 1928. Tuberculosis in captive wild animals. J. Hyg., 28: 198-218.
- 1930. Tuberculosis in cold-blooded animals. In: A System of Bacteriology in Relation to Medicine. Med. Res. Council. His Majesty's Stationary Office, London, 5: 326-332.
- 24. 1941. The susceptibility of the water (or grass) snake (*Tropidonotus natrix*) to the avian tubercle bacillus and to reptilian strains of acid-fast bacilli. J. Hyg., 41: 284-288.
- 25. HANSEMANN, VON
 - 1903. Ueber saurefest Bacillen bei Python reticularis. Zentrbl. Bakt., Abt. I, Orig., 34: 212-213.
- 26. IPPEN, R.
 - 1962. Die Spontane Tuberkulose bei Kaltblütern. Nord. Vet.-Med., 14, suppl. 1: 183-192.
- 27. JAHNEL, J.
 - 1940. Die Fischtuberkulose. Wochenschr. f. Aquarien und Terrarienkunde, 37: 317-321.
- 28. JOHNSTONE, J.
 - 1913. Diseased conditions of fishes. Lancashire Sea Fisheries Lab., Rept. no. 21, 1912: 2-42; see also Proc. & Trans. Liverpool Biol. Soc., 27: 196-201, 1912-1913.
- 29. 1927. Diseased conditions of fishes. Lancashire Sea Fisheries Lab., Rept. no. 35, 1926: 162-167.
- KÜSTER, E.
 1905. Ueber Kaltblütertuberkulose. Much. Med. Wochenschr., 52: 57-58.
- 1928. Die Kaltblütertuberkulose. In: Kolle und Wassermann's Handbuch der Pathogenen Mikroorganismen, 5: 746-774.
- LEDERER, GUSTAV
 1943. Fishtuberkulose. Der Zoologische Garten (N.F.), 15: 107-121.
- 33. LICHTENSTEIN, S.
 - 1943. Ein Fall von Spontanen Froschtuberkulose. Zentrbl. Bact. Abt. I, Orig., 85: 249.
- 34. LINELL, F. & A. NORDEN
 - 1954. Mycobacterium balnei. A new acid-fast bacillus occurring in swimming pools and capable of producing skin lesions in humans. Acta. Tuberc. Scand. (suppl.), 33: 1-85.

- MACHICAO, N. & E. LA PLACA 1954. Lepralike granulomas in frogs. Lab. Invest., 3: 219-227.
- McMillen, Shirley
 1960. Mycobacterium fortuitum: a mutant of Mycobacterium marinum. Bact. Proc., p. 79.
- McMillen, Shirley & Daniel S. Kishner 1959. Mycobacterium marinum Aronson (1926). Bact. Proc., p. 31.
- NIGRELLI, Ross F.
 1953. Causes of diseases and death of fishes in captivity. Zoologica, 28: 203-216.
- Two diseases of the Neon Tetra, Hyphessobrycon innesi. Aquarium Journal (San Francisco), 24: 203-208.
- 40. PARISOT, THOMAS J.
 1958. Tuberculosis in fish. Bact. Rev., 22: 240-245.
- 41. PARISOT, THOMAS J. & EDWARD M. WOOD
 - 1960. A comparative study of the causative agent of the mycobacterial disease of salmonoid fishes. II. A description of the histopathology of the disease in Chinook salmon (Oncorhynchus tschaytscha) and a comparison of the staining characteristics of the fish disease with leprosy and human tuberculosis. Amer. Rev. Respiratory Dis., 82: 212-222.
- 42. REED, G. B.
 - 1948. Mycobacteriaceae. In: Bergey's Manual of Determinative Bacteriology. 6th Ed., pp. 875-891. Williams & Wilkins Co., Baltimore.
- 43. REICHENBACH-KLINKE, H. H. 1955a. Die Fischtuberkulose. Die Aq.-und-Terr.-Zeitschr., No. 1: 12-17.
- 1955b. Beobachtungen über Meeresfisch-Tuberkulose. Pubbl. Stazione Zoologica, Naopli, 26: 55-62.
- 45. 1957. Krankheiten der Aguarienfische. Alfred Kernen Verlag, Stüttgart. 215 pp.
- 46. Ross, A. John
 - 1959. Mycobacteria in adult salmonoid fishes returning to federal hatcheries in Washington, Oregon and California. U.S. Fish & Wildlife Serv., Sp. Sci. Rept. Fish., no. 332: 1-9.
- 47. 1960. Mycobacterium salmoniphilum, sp. nov., from salmonoid fishes. Amer. Rev. Respiratory Dis., 81: 241-250.
- 48. Ross, A. John & F. P. Brancato
 - 1959. Mycobacterium fortuitum Cruz from the tropical fish Hyphessobrycon innesi. J. Bact., 78: 392-395.

- 49. Ross, A. J. & H. E. JOHNSON
 1962. Studies of transmission of mycobacterial infections in Chinook salmon. The Progressive Fish-Culturist, 24: 147-149.
- 50. RUPPRECHT, J.
 - 1904. Über Säurefestes nebst Beschreibung eines Falles von spontaner Froschtuberkulose. Inaug. Diss. Freiburg; also in: Jber. Lehre pathog. Mikroorganism (1904), 20: 591.
- SCHREITMÜLLER, W. & G. LEDERER
 1929. Fischkrankheiten. Das Aquarium, 3: 26.
- 52. SCHWABACHER, H.
 - 1959. A strain of *Mycobacterium* isolated from skin lesions of a cold-blooded animal, *Xenopus laevis*, and its relation to a typical bacilli occurring in man. J. Hyg., 57: 57-67.
- 53. Scott, H. H.
 - 1930. Tuberculosis in man and lower animals. Med. Res. Council (Great Britain), Sp. Rept., Ser., 149: 1-270.
- 54. SHATTOCK, S. G.
 - 1902. Tuberculosis of the esophagus in a *Python*. Tran. Path. Soc., London, 53: 430-440.
- 55. SIBLEY, W. K.
 - 1899. Ueber Tuberkulose bei Wirbelthieren. Virchow's Arch., 116: 105-115.
- 56. SUTHERLAND, P. L.
 - 1922. A tuberculosis-like disease in a saltwater fish (halibut) associated with the presence of an acid-fast tubercle-like bacillus. J. Path. & Bact., 25: 31-35.

- 57. SWIFT, SHELDON & HAROLD COHEN
 - 1962. Granuloma of the skin due to Mycobacterium balnei after abrasions from a fish tank. New England J. Med., 267: 1244-1246.
- 58. VOGEL, HENRY
 - 1956. Metabolic and serologic study of acidfast bacteria from fishes and other coldblooded vertebrates. Doctoral Dissertation, Dept. Biol., N. Y. Univ. Graduate Sch. Arts and Sci.
- 59. 1958. Mycobacteria from cold-blooded animals. Amer. Rev. Tuberculosis, 77: 823-838.
- 60. 1959. A metabolic study of acid-fast bacteria from cold-blooded animals. J. Infect. Dis., 104: 28-37.
- 61. WESTGARD, RICHARD L.
 - 1959. A procedure for the detection of acidfast bacteria in fish: A comparative study of digest-concentrate vs. smear technique. U. S. Fish & Wildlife Serv., Sp. Rept. Fisheries, no. 332: 13-17.
- 62. WINSOR, HENRY
 - 1946. Cold-blooded tuberculosis from the Fairmount Park Aquarium, Philadelphia. Proc. Penna. Acad. Sci., 20: 43-46.
- 63. WOOD, JAMES W.
 - 1959. A survey of tuberculosis in Pacific salmon and steelhead trout in Oregon streams in 1957. U. S. Fish & Wildlife Serv., Sp. Sci. Rept. Fish., no. 332: 18-34.
- 64. Wood, JAMES W. & ERLING J. ORDAL
 - 1958. Tuberculosis in Pacific salmon and steelhead trout. Fish. Comm. of Oregon, Portland, Contr. no. 25: 1-38.

EXPLANATION OF THE PLATES

PLATE I

- FIG. 1. Neon Tetra infected with tuberculosis. Note various degrees of emaciation. A yellowish discoloration of the usually brilliant red markings on the lateral-posterior area is an external manifestation of the disease. Slightly larger than natural size. Photo by S. C. Dunton, New York Zoological Society.
- FIG. 2. Typical acid-fast organisms in smear from discolored area of the skin of the Neon Tetra. Ziehl-Neelsen's stain. 650 ×.

PLATE II

- FIG. 3. Section through the body wall and muscle of the Neon Tetra showing numerous solitary and coalescent tubercles. Hematoxylin-eosin. 100 \times .
- FIG. 4. Section through the body of an infected Neon Tetra showing a characteristic condition of tuberculosis in tropical freshwater fish. Upper left is the liver; the intestine is shown slightly to right of center; in between is the mesentery in which the diffuse exocrine pancreas is present. Hematoxylin-eosin. $50 \times .$

PLATE III

FIG. 5. Stained smear of the internal organs of infected Neon Tetra showing the typical acid-fast mycobacteria, some of which occur within macrophages. Ziehl-Neelsen's stain. 650 ×. FIG. 6. Electrophotomicrograph of acid-fast bacillus from a culture of the Neon Tetra Strain-N. 16,300 ×.

PLATE IV

- FIG. 7. Liver of the cyprinodon *Cynolebias* sp. showing the epitheloid-like tubercles in the parenchyma. Hematoxylin-eosin. 450 ×.
- FIG. 8. Higher magnification of the central area of a tubercle shown in fig. 7. Note the typical acid-fast bacilli. Ziehl-Neelsen. 650 ×.

PLATE V

- FIG. 9. Three-spot or blue gourami with lepromatous-like macular and necrotic skin and fin lesions. ¹/₂ natural size.
- FIG. 10. Hard tubercles ("pearl bodies") in liver and other organs of the Climbing Perch, *Anabas testudineus*. Slightly larger than natural size.

PLATE VI

- FIG. 11. Section in region of the kidney of a goldfish showing coalescent and some degree of caseation of the tubercles. Note lymphocytic infiltration and fibrous development. Hematoxylin-eosin. $300 \times .$
- FIG. 12. Luxuriant subculture of Mycobacterium, Neon Tetra Strain-H, originally isolated from the kidney; grown on Dorset's egg agar at 37°C. A subculture of this strain has been identified as Mycobacterium fortuitum by Ross & Brancato (1959).